Didodecyldimethylammonium Bromide Films Containing Cobalt Phthalocyanine Tetrasulfonate for Electrochemical Catalysis

Nai Fei HU*, Rong HUANG, Jing YANG

Department of Chemistry, Beijing Normal University, Beijing 100875

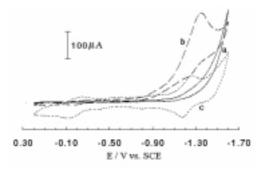
Abstract: Electrochemistry of didodecyldimethylammonium bromide (DDAB) films containing cobalt phthalocyanine tetrasulfonate (CoPcTS⁴-) was examined. CoPcTS⁴-DDAB film electrode showed stable cyclic voltammetric responses in buffers and could catalyze reductions of trichloro-acetic acid.

Keywords: Cobalt phthalocyanine tetrasulfonate; didodecyldimethylammonium bromide; electrochemical catalysis.

Films of water-insoluble surfactants can be prepared by casting their solution onto solid surface and evaporating the organic solvent, forming ordered multiple bilayer structure. These surfactant films provide a unique micro environment for electrode reaction and may improve the electrochemical properties for some incorporated species and have various potential uses in analytical chemistry^{1,2}.

Didodecyldimethylammonium bromide (DDAB) was from Eastman Kodak. Cobalt phthalocyanine tetrasulfonate (CoPcTS⁴⁻) was a gift from Dr. De-Ling Zhou of University of Connecticut, USA. Cyclic voltammetry was done with a model 173 potentiostat (PARC, USA). DDAB films were prepared by casting 10 μ L of 0.1 mol L⁻¹ DDAB chloroform solution onto a pyrolytic graphite (PG) electrode. Chloroform was then evaporated overnight. All potentials reported are *vs.* SCE.

When a DDAB film electrode was placed into CoPcTS⁴⁻ solution, two pairs of well-defined and near reversible peaks appeared at around -0.23 V and -1.24 V, respectively, and grew with soaking time, indicating anionic CoPcTS⁴⁻ could enter into positively charged DDAB films by Coulombic attraction. The steady state CV was achieved after 9-10 hours of soaking. These two sets of CV redox peaks might be attributed to reductions of Co (II) PcTS⁴⁻ to Co (I) PcTS⁵⁻, and Co (I) PcTS⁵⁻ to Co (I) PcTS⁶⁻, respectively³. When the DDAB films fully loaded with CoPcTS⁴⁻ were removed from its solution and transferred into buffers without CoPcTS⁴⁻, the CV remained the same as in CoPcTS⁴⁻ solutions and showed very good stability for at least 4-5 days (**Figure 1c**). Thus, hydrophobic interaction between CoPcTS⁴⁻ and DDAB might contribute to the stability more significantly. For the first pair of peaks of CoPcTS⁴⁻-DDAB films, the cathodic peak current (i_{pc1}) at -0.28 V showed linear relationship with scan rate (v) at v < 0.02 V s⁻¹, suggesting typical thin-layer behaviour⁴. While at v > 0.05 V s⁻¹, i_{pc1} was proportional to


Nai Fei HU et al.

 $v^{1/2}$, indicating diffusion-like behaviour⁴ even in this very thin film. The transformation of the system from diffusion controlled to thin-layer controlled with increasing scan rate is characteristic of film modified electrodes⁵.

According to the slope of i_{pc1} - $v^{1/2}$ straight line at faster scan rates, charge transport diffusion coefficient, D_{ct} , for the film system was estimated to be 2.2×10^{-7} cm² s⁻¹ by Randles-Sevick equation⁴. The potential difference between cathodic and anodic peaks, ΔE_p , was used to estimate the apparent heterogeneous electron transfer rate constant, k^o', by Nicholson's method⁶. The average of k^o' was 7.4×10^{-4} cm s⁻¹.

When a CoPcTS⁴-DDAB film electrode was placed in buffers containing trichloroacetic acid (TCA), a large increase in cathodic current at the potential of the second reduction peak of the film was observed (**Figure 1b**). The anodic peak seen in the absence of TCA (**Figue 1c**) was not observed in its presence. These results are consistent with the reaction of reduced Co (I) PcTS⁶⁻ with TCA in a catalytic cycle. The catalytic peak arose at about -0.9 V, more positive than its direct reduction at bare DDAB films which begins at -1.3 V (**Figure 1a**). The catalytic current increased with the concentration of TCA in the range of $4.0 \times 10^{-5} - 1.0 \times 10^{-3}$ mol L⁻¹ (r=0.9965) suggesting the possibility of analytical application of CoPcTS⁴⁻-DDAB films as sensors to monitor the environmental pollutants such as TCA.

Figure 1. Cyclic voltammograms in pH 7.0 buffers containing 0.1 mol/L KBr at 0.1 V s⁻¹. a, DDAB in 1.0×10^{-2} mol/L TCA; b, CoPcTS⁴⁻-DDAB in 1.0×10^{-2} mol/L TCA; c, CoPcTS⁴⁻-DDAB in blank buffers.

References

- 1. N. Hu, D. J. Howe, M. F. Ahmad and J. F. Rusling, Anal. Chem., 1992, 64, 3180.
- 2. J. F. Rusling and A. F. Nassar, J. Am. Chem. Soc., 1993, 115, 11891.
- 3. J. Zagal, R. K. Sen and E. Yeager, J. Electroanal. Chem., 1977, 83, 207.
- 4. A. J. Bard and L. R. Faulkner, "Electrochemical Methods", Wiley, New York, 1980.
- 5. R. W. Marry, in "*Electroanalytical Chemistry*", Vol. 13, ed. by A. J. Bard, Dekker, New York, **1984**. 191.
- 6. R. S. Nicholson, Anal. Chem., 1965, 37, 1351.

Received 7 September 1998